
VRV: A Versatile RISC-V Simulator for Education
Noah Krim

nbkrim@ucdavis.edu
Department of Computer Science
University of California, Davis

Davis, California, USA

Joël Porquet-Lupine
jporquet@ucdavis.edu

Department of Computer Science
University of California, Davis

Davis, California, USA

Abstract
This paper introduces VRV, a new and open-source RISC-V simu-
lator designed for educational purposes. VRV aims to fill the gap
left by the obsolescence of SPIM, the once-popular MIPS simula-
tor, by providing a user-friendly, versatile tool for teaching com-
puter organization and assembly language programming at un-
dergraduate level. VRV offers both command-line and graphical
interfaces, implements a large subset of the RISC-V instruction set,
and includes features such as an integrated debugger and support
for system-level programming. We discuss the design choices, im-
plementation details, and initial classroom experiences with VRV,
highlighting its potential to become a valuable resource in com-
puter architecture education. The source code can be found at
https://gitlab.com/luplab/vrv.
ACM Reference Format:
Noah Krim and Joël Porquet-Lupine. 2025. VRV: A Versatile RISC-V Sim-
ulator for Education. In Proceedings of the 56th ACM Technical Sympo-
sium on Computer Science Education V. 2 (SIGCSE TS 2025), February 26-
March 1, 2025, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3641555.3705240

1 Introduction
The field of computer architecture education has long relied on emu-
lators and simulators to provide students with hands-on experience
in assembly language programming and computer organization.
For many years, in the late 1990s and 2000s, SPIM [5], a MIPS32 sim-
ulator, was the gold standard in this domain, featured prominently
in Hennessy and Patterson’s seminal textbook [6]. However, as the
MIPS architecture has now almost completely fallen out of favor
in the industry, there is a growing need for educational tools that
support more contemporary instruction set architectures (ISAs).

RISC-V, an open-source ISA that has gained significant traction in
both academia and industry, presents an ideal replacement for MIPS
in educational contexts [3]. While many RISC-V simulators exist,
many lack the combination of features that made SPIM so effective
as a teaching tool. These features include stability, user-friendliness,
both command-line and graphical user interfaces, cross-platform
compatibility, and suitability for both interactive use and automated
grading.

To address these needs, we have developed VRV, a versatile RISC-
V simulator that aims to become the “SPIM of RISC-V” for computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0532-8/25/02
https://doi.org/10.1145/3641555.3705240

architecture education. VRV combines the best features of SPIM
with the modern RISC-V architecture, providing a powerful and
flexible platform for teaching assembly language programming and
computer organization concepts.

2 Related work
Several educational RISC-V simulators have emerged in recent
years, each with its own strengths and limitations.

RARS [1], for instance, offers both command-line and graphical
interfaces but is implemented in Java, limiting its potential for
future web-based deployment since most web browsers have now
abandoned their once native support for Java applets. BRISC-V [2]
and WebRISC-V [4] provide rich web-based interfaces, enhancing
accessibility for students. However, it makes them unusable in
headless autograding scripts.

While these existing tools have made valuable contributions to
RISC-V education, we identified an opportunity to create a simulator
that more closely mirrors the versatility and user experience of
SPIM, while also planning for future online deployment. This led to
the development of VRV, which aims to combine the best aspects of
existing simulators with additional features and a forward-looking
architecture.

3 VRV simulator
VRV is designed to be a comprehensive educational tool for RISC-
V assembly language programming and computer organization
courses.

At its core, VRV implements the RV32IMF_Zicsr instruction
set, which includes: the 32-bit base integer instructions (RV32I),
integer multiplication and division support (M-extension), single-
precision floating-point support (F-extension), and control and sta-
tus registers support (Zicsr-extension). This subset of the RISC-V
instruction set provides a solid foundation for teaching fundamental
concepts while also allowing exploration of more advanced topics.
To facilitate a deeper understanding of computer architecture, VRV
supports two privilege levels: machine mode and user mode. This
feature enables students to write both user-level programs and
system-level code, providing a more comprehensive understanding
of computer architecture and operating system concepts.

VRV assembles RISC-V assembly code at runtime. This feature
simplifies the workflow for students and instructors alike, as VRV
automatically resolves symbol references and expands pseudo-
instructions, allowing students to focus on learning assembly lan-
guage concepts rather than wrestling with potential toolchain com-
plexities.

VRV provides some default system code, mostly to handle unex-
pected exceptions, therefore allowing students to write user pro-
grams without needing to implement low-level exception handling.

https://orcid.org/0009-0000-0349-2053
https://orcid.org/0000-0003-4634-2877
https://gitlab.com/luplab/vrv
https://doi.org/10.1145/3641555.3705240
https://doi.org/10.1145/3641555.3705240


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Noah Krim and Joël Porquet-Lupine

However, it also offers the flexibility for students to supply their
own system code, enabling their exploration of advanced topics
such as interrupt or exception handling and basic operating system
development. To facilitate input/output operations, VRV includes a
simple, optional memory-mapped TTY device (the LupIO-TTY from
the LupIO collection of educational device [7]), allowing students
to interact with their programs and learn about memory-mapped
I/O concepts in a controlled environment.

One of VRV’s most powerful features is its integrated debugger.
Students can set breakpoints, watch memory locations, and display
register contents, all of which are crucial for understanding program
execution and debugging assembly code. This feature significantly
enhances the learning experience by providing immediate feedback
and visualization of program behavior.

Finally, VRV offers two equivalent interfaces: a command-line
interface (CLI), and a graphical user interface (GUI) implemented
using the Qt framework. The CLI is ideal for use in automated
autograding scripts and for students who prefer terminal-based
workflows, while the GUI provides a more intuitive environment
for visual learners and interactive debugging sessions. This dual-
interface approach, shown in Figure 1 ensures that VRV can meet
the diverse needs of different educational settings and student pref-
erences.

Figure 1: VRV CLI and GUI

4 Classroom experience
We introduced VRV at our institution in a lower-division computer
organization class during the Fall 2023 term. The course included
three programming assignments in assembly code, designed to
leverage VRV’s capabilities. Students implemented basic programs
such as coin change calculation and temperature conversion, then

a sorting and binary-searching program using functions, and they
finally wrote a trap handler to emulate misaligned memory accesses.

In our end-of-the-term class survey, we included a few 4-point
Likert-scale questions about VRV as well as some optional free-
response sections. As shown in Figure 2, initial feedback from
students was encouraging, with over 75% reporting a positive ex-
perience. They often reported appreciating the clean interface and
powerful debugging capabilities of VRV.

Ease of use

Effectiveness

0% 25% 50% 75%

1 2 3 4

Figure 2: Students’ feedback about VRV (114 students total)

However, as with any new software development, we encoun-
tered some challenges too. At the time of deployment, the multiplat-
form support was not ready, preventing us from letting students
install the simulator on their own devices. Instead we provided it
through our instructional computer facility, so that students could
use it over SSH. Some unfortunately reported experiencing diffi-
culty running the Qt-based GUI version over SSH. Additionally,
others were sometimes confused with the error messages when
assembling code, highlighting the need for improved clarity and
specificity in error reporting. The need for comprehensive docu-
mentation became apparent during the course too, as we received
a few requests for features that actually already existed.

5 Conclusion
VRV aims to fill the gap left by the obsolescence of SPIM, but for the
RISC-V computer architecture. Our initial classroom deployment
has demonstrated its potential to become a valuable resource for
teaching computer organization and assembly language program-
ming. As we continue to refine and expand VRV, we are focusing on
improving cross-platform compatibility, enhancing the user experi-
ence, and developing a web-based implementation. These efforts
will ensure that VRV remains a versatile and powerful tool for
computer architecture education in the years to come.

References
[1] 2024. RARS: RISC-V Assembler and Runtime Simulator. https://github.com/

TheThirdOne/rars [Accessed 10/14/2024].
[2] Rashmi Agrawal, Sahan Bandara, Alan Ehret, Mihailo Isakov, Miguel Mark, and

Michel A Kinsy. 2019. The BRISC-V platform: A practical teaching approach for
computer architecture. In Proceedings of the Workshop on Computer Architecture
Education. 1–8.

[3] Krste Asanović and David A Patterson. 2014. Instruction sets should be free: The
case for risc-v. (2014).

[4] Roberto Giorgi and Gianfranco Mariotti. 2019. Webrisc-v: A web-based education-
oriented risc-v pipeline simulation environment. In Proceedings of the workshop
on computer architecture education. 1–6.

[5] James Larus. 2011. SPIM: A MIPS32 Simulator. https://pages.cs.wisc.edu/~larus/
spim.html [Accessed 10/14/2024].

[6] David A Patterson and John L Hennessy. 2005. Computer organization and Design
(third ed.). Morgan Kaufmann,.

[7] Joël Porquet-Lupine. 2021. LupIO: a collection of education-friendly I/O devices.
In 2021 ACM/IEEE Workshop on Computer Architecture Education (WCAE). IEEE,
1–8.

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars
https://pages.cs.wisc.edu/~larus/spim.html
https://pages.cs.wisc.edu/~larus/spim.html

	Abstract
	1 Introduction
	2 Related work
	3 VRV simulator
	4 Classroom experience
	5 Conclusion
	References

